Modal Analysis of Rotating Wind Turbine using Multiblade Coordinate Transformation and Harmonic Power Spectrum
نویسندگان
چکیده
Understanding and characterization of wind turbine dynamics, especially when operating, is an important though challenging task. The main problem is that an operating wind turbine cannot be truly modeled as a time invariant system, which limits the applicability of conventional well-established modal analysis methods. This paper compares two experimental techniques that characterize the dynamic behavior of an operating horizontal axis wind turbine (Vestas V27, 225kW, rotor diameter 27m, 12 accelerometers on each blade). The first method uses a multiblade coordinate transformation to convert the time periodic system into a time invariant one, assuming that the system is perfectly isotropic. Conventional operational modal analysis then can be applied to identify the modal parameters of the time invariant model. The second method processes the periodic response directly based on an extension of modal analysis to linear time periodic systems. It utilizes the harmonic power spectrum, which is analogous to the power spectrum for a time invariant system, to identify a periodic model for the turbine. This work demonstrates both of these methods on measurements from the operating turbine and discusses the challenges that are encountered. The procedure is demonstrated by using it to extract the time-periodic mode shapes of the first edge-wise modes, revealing that this turbine apparently has non-negligible blade-to-blade variations and hence the dynamics of these modes are considerably different than one would expect for an anisotropic turbine.
منابع مشابه
Fault diagnosis of a Wind Turbine Rotor using a Multi-blade Coordinate Framework
Fault diagnosis of a wind turbine rotor is considered. The faults considered are sensor faults and blades mounted with a pitch offset. A fault at a single blade will result in asymmetries in the rotor, which can be applied for fault diagnosis. The diagnosis is derived by using the multiblade coordinate (MBC) transformation also known as the Coleman transformation together with active fault diag...
متن کاملFixed-structure H∞ control design for linear Individual Pitch Control of two-bladed wind turbines
In this paper, a fixed-structure Individual Pitch Control (IPC) design method for two-bladed wind turbines is presented. IPC is an active load reduction technique designed to lower wind turbine loads, which are caused by continuously varying wind conditions. Based on load measurements, the once-per-revolution (1P) loads and harmonics of this frequency (2P, 3P, etc.) can be reduced by rotating (...
متن کاملA Comparison of Smart Rotor Control Approaches Using Trailing Edge Flaps and Individual Pitch Control
Modern wind turbines have been steadily increasing in size, and have now become very large, with recent models boasting rotor diameters greater than 120 m. Reducing the loads experienced by the wind turbine rotor blades is one means of lowering the cost of energy of wind turbines. Wind turbines are subjected to significant and rapid fluctuating loads, which arise from a variety of sources inclu...
متن کاملPerformance of Disturbance Augmented Control Design in Turbulent Wind Conditions
This paper investigates the use of disturbance models in the design of wind turbine individual pitch controllers. Previous work has used individual pitch control and disturbance models with the Multiblade Coordinate Transformation to design controllers that reduce the blade loads at the frequencies associated with the rotor speed. This paper takes a similar approach of using a disturbance model...
متن کاملA Lifting Algorithm for Output-only Continuous Scan Laser Doppler Vibrometry
Continuous Scan Laser Doppler Vibrometry (CSLDV) can greatly accelerate modal testing by continuously sweeping the measuring laser over the structure, effectively capturing the response of the structure at tens or even hundreds of points simultaneously. The authors recently extended this technique to the case where the input forces are unmeasured and random using harmonic power spectrum. This p...
متن کامل